Members
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Malleable task-graph scheduling with a practical speed-up model

Participants : Loris Marchal, Bertrand Simon, Oliver Sinnen [Univ. Auckland, New Zealand] , Frédéric Vivien.

Scientific workloads are often described by Directed Acyclic task Graphs. Indeed, DAGs represent both a model frequently studied in theoretical literature and the structure employed by dynamic runtime schedulers to handle HPC applications. A natural problem is then to compute a makespan-minimizing schedule of a given graph. In this work, we are motivated by task graphs arising from multifrontal factorizations of sparsematrices and therefore work under the following practical model. We focus on malleable tasks (i.e., a single task can be allotted a time-varying number of processors) and specifically on a simple yet realistic speedup model: each task can be perfectly parallelized, but only up to a limited number of processors. We first prove that the associated decision problem of minimizing the makespan is NP-Complete. Then, we study a widely used algorithm, PropScheduling, under this practical model and propose a new strategy GreedyFilling. Even though both strategies are 2-approximations, experiments on real and synthetic data sets show that GreedyFilling achieves significantly lower makespans.

This work is described in a technical report [52].